On the Leading Coefficients of Real Many-Variable Polynomials

Bernard Beauzamy*
Institut de Calcul Mathématique, 37 rue Tournefort, 75005 Paris, France
Communicated by T. J. Rivlin

Received February 20, 1992; accepted in revised form March 23, 1993

Abstract

For a homogeneous polynomial P in N variables, x_{1}, \ldots, x_{N}, of degree k, the leading terms are those which contain only one variable, raised to the power k. If $0 \leqslant P \leqslant 1$ when all variables satisfy $0 \leqslant x_{j} \leqslant 1$, how large can the leading coefficients be? Estimates were given by R. Aron, B. Beauzamy, and P. Enflo (J. Approx. Theory 74 (2) (1993), 181-198); we improve these estimates in general and solve the problem completely for $k=2$ and 3. Symbolic computation (MAPLE on a Digital DecStation 5000) was heavily used at two levels: first in order to get a preliminary intuition on the concepts discussed here, and second, as symbolic manipulation on polynomials, in most proofs. Numerical analysis was made on a Connection Machine CM2, using the hypercube representation obtained by B. Beauzamy, J.-L. Frot, and C. Millour (Massively parallel computations on manyvariable polynomials: When seconds count, preprint). O1994 Academic Press, lnc.

Let

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{N}\right)=\sum_{|x|==k} a_{x} x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}}, \tag{1}
\end{equation*}
$$

with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right),|\alpha|=\alpha_{1}+\cdots+\alpha_{N}$, be a homogeneous polynomial of degree k in N variables x_{1}, \ldots, x_{N}.

As already done by Aron, Beauzamy, and Enflo in [1], among all coefficients a_{x}, we distinguish the leading ones, denoted by $a_{l}(l=1, \ldots, N): a_{l}$ is the coefficient of the sole variable x_{l}, raised to the power k. So the leading terms are those which contain just one variable, raised to the power k (this terminology is of course inspired by the one-variable situation). All other terms contain at least two variables, and the polynomial can be written

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{N}\right)=\sum_{l=1}^{N} a_{l} x_{l}^{k}+\sum_{|\beta|=k} a_{\beta} x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}}, \tag{2}
\end{equation*}
$$

where in the last term all β 's have at least two non-zero components.

[^0]The question raised in [1] is: If we know $\sum_{i=1}^{N}\left|a_{i}\right|$, can we find a lower bound for $\max _{0 \leqslant x_{j} \leqslant 1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|$?

The reason for this question, explained in [1], is that such a result allows us to decrease the number of terms in the polynomial we need to consider: in order to find a lower bound for $\max _{0 \leqslant x_{j} \leqslant 1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|$ (a quantity which depends on all terms in P), we need only to consider the a_{i} 's, which represent only N terms.

In [1] it was shown that

$$
\begin{equation*}
\sum_{1}^{N}\left|a_{f}\right| \leqslant C_{k} \max _{0 \leqslant x_{j} \leqslant 1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right| \tag{3}
\end{equation*}
$$

with $C_{k} \leqslant 4 k^{2}$, and that the best C_{k} must satisfy $C_{k} \geqslant k$.
We will obtain estimates for C_{k} from below by an iterative procedure (at each step, replacing the variable by a previously obtained polynomial), and this iterative procedure will require $0 \leqslant P \leqslant 1$ when all variables satisfy $0 \leqslant x_{i} \leqslant 1$ (and not just $|P| \leqslant 1$). For this technical reason, we investigate

$$
\begin{gather*}
B_{k}=\sup \left\{\sum_{l=1}^{N}\left|a_{l}\right| ; P \text { as in }(1), 0 \leqslant P \leqslant 1 \text { if } 0 \leqslant x_{j} \leqslant 1,\right. \\
j=1, \ldots, N ; N=1,2, \ldots\} \tag{4}
\end{gather*}
$$

and we want to find a lower bound for B_{k}. We write $|P|_{\text {lead }}$ instead of $\sum_{l=1}^{N}\left|a_{i}\right|$.

Our main result is:
Theorem 1. For $k \geqslant 2$, the following estimates hold: $B_{2} \geqslant 4, B_{3} \geqslant 9$, and for $k \geqslant 3$,

$$
B_{k} \geqslant k^{\log 6, \log 3}
$$

Each of these estimates requires the production of a corresponding polynomial. The techniques are different in each case.

Proposition 2. The polynomial in N variables, homogeneous of degree 2,

$$
P\left(x_{1}, \ldots, x_{N}\right)=A\left(\frac{x_{1}^{2}+\cdots+x_{N}^{2}}{N}-\frac{2}{N(N-1)} \sum_{i<j} x_{i} x_{j}\right),
$$

with $A=4(N-1) / N$ if N is even, $A=4 N /(N+1)$ if N is odd, satisfies $0 \leqslant P \leqslant 1$ if all x_{j} 's satisfy $0 \leqslant x_{j} \leqslant 1$.

Proof of Proposition 2. Let's first show that $P \geqslant 0$, that is,

$$
\frac{2}{N(N-1)} \sum_{i<j} x_{i} x_{j} \leqslant \frac{1}{N}\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)
$$

or

$$
\frac{1}{N(N-1)}\left(\sum_{i \neq j} x_{i} x_{j}+\sum_{i} x_{i}^{2}\right) \leqslant\left(\frac{1}{N}+\frac{1}{N(N-1)}\right) \sum_{i} x_{i}^{2}
$$

which is equivalent to

$$
\frac{1}{N}\left(\sum_{i} x_{i}\right)^{2} \leqslant \sum_{i} x_{i}^{2}
$$

a consequence of Hölder's inequality.
Let's now show that $P \leqslant 1$. Since P is a convex function of each x_{j}, it's enough to show it when $x_{j}=0$ or 1 .

Let's assume that K of the x_{j} 's are 1 , and $N-K$ are 0 .
The condition $P \leqslant 1$ reads

$$
A\left(\frac{K}{N}-\frac{2}{N(N-1)} \frac{K(K-1)}{2}\right) \leqslant 1,
$$

or

$$
A \frac{K(N-K)}{N(N-1)} \leqslant 1
$$

The maximum of $K(N-K) / N(N-1)$ is reached for $K \sim N / 2$. More precisely, if N is even, $N=2 M$, it is obtained for $K=M$, and gives $N / 4(N-1)$, and if $N=2 M+1$, it is obtained for $K=M$, and gives $(N+1) / 4 N$. The values of A follow.

This gives the required estimate for B_{2} in Theorem 1. We observe that the maximum is not obtained for a fixed number of variables, but letting $N \rightarrow+\infty$.

We now turn to the case of degree 3 :

Proposition 3. The polynomial

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{N}\right)=A \sum_{1}^{N} x_{i}^{3}-B \sum_{i \neq j} x_{i}^{2} x_{j}+C \sum_{i<j<k} x_{i} x_{j} x_{k} \tag{5}
\end{equation*}
$$

with

$$
\begin{aligned}
A & =\frac{1}{N^{3}}(3 N-4)^{2}, \\
B & =\frac{8}{N^{3}}(3 N-6), \\
C & =\frac{96}{N^{3}}
\end{aligned}
$$

satisfies $0 \leqslant P \leqslant 1$ when all the x_{j} 's satisfy $0 \leqslant x_{j} \leqslant 1$.
Assuming this result, we see that the estimate for B_{3} follows: indeed, when $N \rightarrow+\infty,|P|_{\text {lead }} \rightarrow 9$. But here again, the maximum is not reached for any prescribed number of variables.

Proof of Proposition 3. We take P under the form (5) and compute the values of A, B, C, so it has the required properties. First, we study the case where K of the variables x_{j} take the value 1 , and $N-K$ take the value 0 $(0 \leqslant K \leqslant N)$. We set

$$
\varphi(K)=P(\underbrace{(1, \ldots, 1,0}_{K \text { times }}, \ldots, 0)
$$

and so

$$
\begin{equation*}
\varphi(K)=A K-B K(K-1)+\frac{C}{6} K(K-1)(K-2) \tag{6}
\end{equation*}
$$

We will choose A, B, C, such that $0 \leqslant \varphi(K) \leqslant 1$ for $K=0, \ldots, N$, and with A as large as possible since $|P|_{\text {tead }}=A N$.

The polynomial $\varphi(x)$ must vanish at 0 , must satisfy $0 \leqslant \varphi(x) \leqslant 1$ if $x \in[0, N]$, and we want $\varphi(1)$ to be as large as possible. Therefore, we will require φ to have a double zero $\alpha, 0 \leqslant \alpha \leqslant N$ (which ensures $\varphi(x) \geqslant 0$, $0 \leqslant x \leqslant N$), and we prescribe $\varphi(x)$ to be of the form

$$
\begin{equation*}
\varphi(x)=\gamma x(x-\alpha)^{2}, \tag{7}
\end{equation*}
$$

where $0 \leqslant \alpha \leqslant N$, and $\gamma>0$ have to be chosen. Then clearly $\varphi(K) \geqslant 0$ for all $K \geqslant 0$, and by a result of Choi, Lam, and Reznick [3, Theorem 3.7], since $\operatorname{deg} P \leqslant 3$, this implies that $P \geqslant 0$ when $x_{j} \geqslant 0$.

We have

$$
\varphi^{\prime}(x)=\gamma(x-\alpha)(3 x-\alpha),
$$

and so, in order to impose $\varphi(x) \leqslant 1,0 \leqslant x \leqslant N$, all we have to require is $\varphi(\alpha / 3) \leqslant 1, \varphi(N) \leqslant 1$, that is,

$$
\begin{array}{r}
2 \gamma \alpha^{3} / 27 \leqslant 1 \\
\gamma N(N-\alpha)^{2} \leqslant 1 .
\end{array}
$$

We put $\alpha=\lambda N(0<\lambda<1)$, and we obtain

$$
\begin{array}{r}
4 \gamma \lambda^{3} N^{3} / 27 \leqslant 1 \tag{8}\\
\gamma N^{3}(1-\lambda)^{2} \leqslant 1 .
\end{array}
$$

But $\varphi(1)=\gamma(1-\alpha)^{2}=\gamma(1-\lambda N)^{2}$ is an increasing function of γ. So $\varphi(1)$ will be maximal if both inequalities in (8) are equalities. Solving in λ, MAPLE gets

$$
\left(\frac{\lambda}{3}\right)^{3}=\left(\frac{1-\hat{\lambda}}{2}\right)^{2}
$$

and finds the solutions $\lambda=3 / 4,3,3$.
This gives $\alpha=3 N / 4, \gamma=16 / N^{3}$, and

$$
\varphi(x)=\frac{16}{N^{3}} x\left(x-\frac{3}{4} N\right)^{2}
$$

The values of A, B, C, are now deduced from the system

$$
\varphi(1)=A, \quad \varphi(2)=2 A-2 B, \quad C=6 \gamma
$$

easily solved by MAPLE.
We now show that $P \leqslant 1$ when all the x_{j} are $\leqslant 1$.
For this, we first observe that P can be written as

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{N}\right)=\frac{9}{N} \sum_{1}^{N} x_{i}^{3}-\frac{24}{N^{2}}\left(\sum_{1}^{N} x_{i}^{2}\right)\left(\sum_{1}^{N} x_{i}\right)+\frac{16}{N^{3}}\left(\sum_{1}^{N} x_{i}\right)^{3} \tag{9}
\end{equation*}
$$

To simplify our notation, we put

$$
m_{1}=\frac{1}{N} \sum_{1}^{N} x_{i}, \quad m_{2}=\frac{1}{N} \sum_{1}^{N} x_{i}^{2}, \quad m_{3}=\frac{1}{N} \sum_{1}^{N} x_{i}^{3}
$$

and P becomes

$$
P=9 m_{1}-24 m_{1} m_{2}+16 m_{3} .
$$

We have:

Lemma 4. Let P be a symmetric polynomial of degree 3, written as

$$
P=a m_{3}+b m_{1} m_{2}+c m_{1}^{3},
$$

where $a+b+c \leqslant 1,3 a+b \geqslant 0,2 b+3 c \geqslant 0$. Then, if $P \geqslant 0$ when all $x_{i} \geqslant 0$, P automatically satisfies $P \leqslant 1$ when $0 \leqslant x_{i} \leqslant 1$.

Proof of Lemma 4. We set $x_{i}=1-t_{i}$. If $x_{i} \leqslant 1, t_{i} \geqslant 0$, and with the notation

$$
\mu_{1}=\frac{1}{N} \sum_{1}^{N} t_{i}, \quad \mu_{2}=\frac{1}{N} \sum_{1}^{N} t_{i}^{2}, \quad \mu_{3}=\frac{1}{N} \sum_{1}^{N} t_{i}^{3}
$$

P becomes

$$
\begin{aligned}
P= & -\left(a \mu_{3}+b \mu_{1} \mu_{2}+c \mu_{1}^{3}\right)+a+b+c \\
& -3 \mu_{1}(a+b+c)+\mu_{2}(3 a+b)+\mu_{1}^{2}(2 b+3 c)
\end{aligned}
$$

Since $a \mu_{3}+b \mu_{1} \mu_{2}+c \mu_{1}^{3} \geqslant 0$, the condition $P \leqslant 1$ will be satisfied as soon as

$$
a+b+c-3 \mu_{1}(a+b+c)+\mu_{2}(3 a+b)+\mu_{1}^{2}(2 b+3 c) \leqslant 1 .
$$

But $\mu_{2} \leqslant \mu_{1}, 3 a+b \geqslant 0$, so this inequality holds if

$$
a+b+c-\mu_{1}\left(1-\mu_{1}\right)(2 b+3 c) \leqslant 1,
$$

which is satisfied by assumption. This proves Lemma 4, and finishes the proof of the theorem in the case $k=3$.

Remark. If we put

$$
Q\left(x_{1}, \ldots, x_{2 N}\right)=P\left(x_{1}, \ldots, x_{N}\right)-P\left(x_{N+1}, \ldots, x_{2 N}\right)
$$

we find that $\left|Q\left(x_{1}, \ldots, x_{2 N}\right)\right| \leqslant 1$ if $0 \leqslant x_{j} \leqslant 1$, and $|Q|_{\text {lead }} \rightarrow 18$ when $N \rightarrow+\infty$.

So the best constant C_{3} in the inequality

$$
|Q|_{\text {lead }} \leqslant C_{k} \sup _{0 \leqslant x_{j} \leqslant 1}\left|Q\left(x_{1}, \ldots, x_{N}\right)\right|
$$

satisfies $C_{3} \geqslant 18$; Theorem 1.2 in [1] shows that $C_{k} \leqslant 4 k^{2}$.
Can this construction of P, with large leading coefficients, be carried over for $k>3$? We don't know. Following the same pattern would require:

- Finding a polynomial $\varphi(x)$ of degree k, in one variable, with $0 \leqslant \varphi(x) \leqslant 1$ if $0 \leqslant x \leqslant N$, and $\varphi(1)$ as large as possible;
--- Identifying the many-variable polynomial $P\left(x_{1}, \ldots, x_{N}\right)$, homogeneous of degree k, with first term $A \sum_{1}^{\mathcal{N}} x_{i}^{k}$, such that

$$
P(\underbrace{1, \ldots, 1}_{j \text { times }}, 0, \ldots, 0)=\varphi(j),
$$

for $j=0, \ldots, N$;
Proving that $0 \leqslant P \leqslant 1$ if all x_{j} 's satisfy $0 \leqslant x_{j} \leqslant 1$.
The first two steps are not very hard to perform, but the last oneproving that $0 \leqslant P \leqslant 1$ does not seem within our reach at present. Of course, the result of Choi, Lam, and Reznick we have used is not valid for $k \geqslant 3$, but this is not the main point: our proof, for $k=3$, only uses this result for simplicity (our original proof did not). The main point is that no tool is presently known, ensuring that a many-variable polynomial, of degree $k>3$, satisfies $0 \leqslant P \leqslant 1$ when all x_{i} satisfy $0 \leqslant x_{i} \leqslant 1$.

Since this problem cannot be solved, we have two possibilities. The first one is to build P, with $0 \leqslant P \leqslant 1$, by some iterative procedure from a known polynomial: this will lead to the estimate for B_{k} in Theorem 1. These estimates are not in k^{2} as we would like, but they are better than anything previously known.

The second one will be to change the norm, and replace

$$
\sup _{0 \leqslant x_{j} \leqslant 1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|
$$

by the quantity

$$
\sup _{x_{j}=0,1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|
$$

which will be discussed at the end of the paper.
We now turn to the iterative procedure in order to estimate B_{k}.

Proposition 5. Assume we can find a polynomial P_{0}, with N_{0} variables, homogeneous of degree k_{0}, with the properties:
all leading coefficients are 1,

- if all x_{j} satisfy $0 \leqslant x_{j} \leqslant 1$, then $0 \leqslant P_{0} \leqslant 1$.

Then $B_{k} \geqslant k^{\log N_{0} / \log k_{0}}$, for all k of the form $k=k_{0}^{j}, j \in \mathbb{N}$.

Proof of Proposition 5. By assumption $\left|P_{0}\right|_{\text {lead }}=N$ and $0 \leqslant P_{0} \leqslant 1$ if all $x_{j} \in[0,1]$. Set $P_{1}=P_{0}$, and

$$
P_{2}=P_{0}\left(P_{1}\left(x_{1}, \ldots, x_{N_{0}}\right), P_{1}\left(x_{N_{0}+1}, \ldots, x_{2 N_{0}}\right), \ldots, P_{1}\left(x_{\left(N_{0}-1\right) N_{0}+1}, \ldots, x_{N_{0}^{2}}\right)\right) .
$$

So P_{2} has N_{0}^{2} variables, $\left|P_{2}\right|_{\text {lead }}=N^{2}, \operatorname{deg} P_{2}=k_{0}^{2}$, and $0 \leqslant P_{2} \leqslant 1$ if $x_{i} \in[0,1]$.

Assume P_{j-1} has been defined, with N_{0}^{j-1} variables, $\operatorname{deg} P_{j-1}=k^{j-1}$, and $0 \leqslant P_{j-1} \leqslant 1$ if $x_{i} \in[0,1]$. Set

$$
P_{j}=P_{0}\left(P_{j-1}\left(x_{1}, \ldots, x_{N_{0}^{j-1}}\right), \ldots, P_{j-1}\left(x_{\left(N_{0}-1\right) N_{0}^{j-1}+1}, \ldots, x_{N_{0}^{\prime}}\right)\right) .
$$

So P_{j} has N_{0}^{j} variables, $\left|P_{j}\right|_{\text {lead }}=N_{0}^{j}, \operatorname{deg} P_{j}=k_{0}^{j}$, and $0 \leqslant P_{j} \leqslant 1$ if $x_{i} \in[0,1]$.

Set $k=\operatorname{deg} P_{j}$. Then

$$
N_{0}^{j} \leqslant B_{k} .
$$

But $k=k_{0}^{j}, j=\log k / \log k_{0}$, and

$$
B_{k} \geqslant N_{0}^{\log k / \log k_{0}}=k^{\log N_{0} / \log k_{0}},
$$

as we announced. This proves Proposition 5.
We observe that, in order to be applied, this inductive procedure requires a polynomial with leading coefficients all equal to 1 , and this is not the case of the ones we have exhibited so far.

So we will prove:
Proposition 6. The polynomial in 6 variables, with 56 terms,

$$
\begin{equation*}
P_{0}\left(x_{1}, \ldots, x_{6}\right)=\sum_{1}^{6} x_{i}^{3}-\frac{1}{2} \sum_{i \neq j} x_{i}^{2} x_{j}+\frac{1}{2} \sum_{i<j<k} x_{i} x_{j} x_{k} \tag{10}
\end{equation*}
$$

satisfies $0 \leqslant P_{0} \leqslant 1$ if $x_{i} \in[0,1]$.
This proposition, producing a polynomial of degree 3 with 6 variables, gives the estimate $k^{\log 6 / \log 3}$ in Theorem 1. It improves upon the estimate $k^{\log 3 / \log 2}$, obtained by A. Tonge from the consideration of the polynomial

$$
P_{0}(x, y, z)=x^{2}+y^{2}+z^{2}-x y-y z-z x
$$

which also satisfies $0 \leqslant P_{0} \leqslant 1$ if $x, y, z \in[0,1]$.
Before proving Proposition 6, we will state:
Proposition 7. The polynomial P_{0} defined in (10) is, among all polynomials of degree 3 with leading coefficients 1 , with 6 variables, the only one
which may satisfy $0 \leqslant P_{0} \leqslant 1$ if all $x_{i} \in[0,1]$. There is no such polynomial with 7 variables.

Proof of Proposition 7. We consider any degree 3 polynomial with N variables, of the form

$$
P=\sum_{1}^{N} x_{i}^{3}-C_{1} \sum_{i<j} x_{i}^{2} x_{j}+C_{2} \sum_{i<j<k} x_{i} x_{j} x_{k}
$$

Taking K of the variables x_{i} to be $1, N-K$ to be 0 , we obtain the set of conditions

$$
0 \leqslant K-K(K-1) C_{1}+\frac{K(K-1)(K-2)}{6} C_{2} \leqslant 1
$$

which can be written, for $K \geqslant 2$,

$$
\begin{equation*}
\frac{1}{K} \leqslant C_{1}-\frac{K-2}{6} C_{2} \leqslant \frac{1}{K-1} \tag{11}
\end{equation*}
$$

Taking successively $K=2,3,4$, we get

$$
\begin{aligned}
& \frac{1}{2} \leqslant C_{1} \leqslant 1, \\
& C_{2} \geqslant 6\left(C_{1}-\frac{1}{2}\right) \geqslant 0, \\
& C_{2} \geqslant 1 / 2
\end{aligned}
$$

The left-hand side conditions in (11) can be written

$$
\begin{equation*}
C_{1} \geqslant \frac{K-2}{6} C_{2}+\frac{1}{K}, \tag{12}
\end{equation*}
$$

and since $C_{2} \geqslant 1 / 2$, the strongest one will be the one with the highest K.
The right-hand side gives

$$
\begin{equation*}
C_{1} \leqslant \frac{K-2}{6} C_{2}+\frac{1}{K-1}, \tag{13}
\end{equation*}
$$

and the conditions for $K \geqslant 4$ are weaker than those for $K=4$, and so we keep these for $K=3,4$, that is,

$$
\begin{align*}
& C_{1} \leqslant \frac{1}{6} C_{2}+\frac{1}{2} \tag{14}\\
& C_{1} \leqslant \frac{1}{3} C_{2}+\frac{1}{3} . \tag{15}
\end{align*}
$$

This implies that no 7 -variable polynomial may exist. Indeed, we would have by (12)

$$
C_{1} \geqslant \frac{5}{6} C_{2}+\frac{1}{7},
$$

and by (15)

$$
\frac{5}{6} C_{2}+\frac{1}{7} \leqslant \frac{1}{3} C_{2}+\frac{1}{3}
$$

which gives $C_{2} \leqslant 8 / 21$, contradicting $C_{2} \geqslant 1 / 2$.
This also implies the uniqueness for $K=6$. Indeed, (12) gives

$$
C_{1} \geqslant \frac{2}{3} C_{2}+\frac{1}{6},
$$

and compatibility with (14), (15) implies $C_{2}=1 / 2$.
Coming back to (11), we find

$$
\frac{1}{K} \leqslant C_{1}-\frac{K-2}{12} \leqslant \frac{1}{K-1}
$$

and for $K=4$, this gives $C_{1} \leqslant 1 / 2$, and finally $C_{1}=1 / 2$, which proves Proposition 7.

We now prove Proposition 6.
(1) To show that $P_{0} \geqslant 0$ if $x_{j} \geqslant 0$, by the theorem of Choi, Lam, and Reznick [3] already cited, it is enough to do it when K of the variables are equal to $1,6-K$ equal to $0(K=0, \ldots, 6)$. Set

$$
\varphi(K)=P(\underbrace{1, \ldots, 1}_{K \text { times }}, \underbrace{0, \ldots, 0}_{6 \ldots \text { times }}) .
$$

Then

$$
\begin{aligned}
\varphi(K) & =K-\frac{K(K-1)}{2}+\frac{K(K-1)(K-2)}{12} \\
& =\frac{1}{12} K(K-4)(K-5)
\end{aligned}
$$

and $\varphi(K) \geqslant 0$ for $K=0, \ldots, 6$.
(2) To show that $P_{0} \leqslant 1$ if $x_{j} \in[0,1]$, we write P_{0} under symmetric form

$$
\begin{aligned}
P_{0} & =10\left(\frac{1}{6} \sum_{1}^{6} x_{i}^{3}\right)-27\left(\frac{1}{6} \sum_{1}^{6} x_{i}^{2}\right)\left(\frac{1}{6} \sum_{1}^{6} x_{i}\right)+18\left(\frac{1}{6} \sum_{1}^{6} x_{i}\right)^{3} \\
& =10 m_{3}-27 m_{1} m_{2}+18 m_{1}^{3}
\end{aligned}
$$

and we apply Lemma 4 again.

This concludes the proof of Proposition 7, and that of Theorem 1.
Remark. In a preliminary version of this paper, the proof of Proposition 5 was obtained by symbolic manipulation in the following way. Maple computes the 6 partial derivatives (which have degree 2), and the differences $\partial P / \partial x_{i}-\partial P / \partial x_{j}$. The entire system of differences is then solved. Then one studies the boundary cases $x_{j}=0,1$. The proof presented here is of course much simpler, but there is no evidence it exists for degree 5 and above.

We now investigate similar concepts for the quantity

$$
\{P\}_{0,1}=\max _{x_{j}=0,1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|
$$

and define D_{k} as the smallest constant such that

$$
|P|_{\text {lead }} \leqslant D_{k} \max _{x_{j}=0,1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|
$$

holds for all polynomials P, homogeneous of degree k, in many variables x_{1}, \ldots, x_{N}.

First, the proof of Theorem 1.2 in [1] shows that

$$
D_{k} \leqslant 4 k^{2}
$$

We are going to prove:
Proposition 8. For every $k \geqslant 1, D_{k} \geqslant 2 k^{2}$.
Proof of Proposition 8. We consider P under the form

$$
\begin{aligned}
P= & A_{0}\left(\frac{1}{N} \sum_{1}^{N} x_{i}^{k}\right)+A_{1}\left(\frac{1}{N} \sum_{1}^{N} x_{i}^{k-1}\right)\left(\frac{1}{N} \sum_{1}^{N} x_{i}\right) \\
& +A_{2}\left(\frac{1}{N} \sum_{1}^{N} x_{i}^{k-2}\right)\left(\frac{1}{N} \sum_{1}^{N} x_{i}\right)^{2} \\
& +\cdots+A_{j}\left(\frac{1}{N} \sum_{1}^{N} x_{i}^{k-j}\right)\left(\frac{1}{N} \sum_{1}^{N} x_{i}\right)^{j}+\cdots+A_{k-1}\left(\frac{1}{N} \sum_{1}^{N} x_{i}\right)^{k} \\
= & A_{0} m_{k}+A_{1} m_{k-1} m_{1}+\cdots+A_{j} m_{k-j} m_{1}^{j}+\cdots+A_{k-1} m_{1}^{k}
\end{aligned}
$$

with our previous notation.
The coefficient of x_{1}^{k} is

$$
\frac{A_{0}}{N}+\frac{A_{1}}{N^{2}}+\cdots+\frac{A_{k-1}}{N^{k}}
$$

and therefore

$$
|P|_{\text {lead }}=A_{0}+\frac{A_{1}}{N}+\cdots+\frac{A_{k-1}}{N^{k-1}} \rightarrow A_{0}
$$

when $N \rightarrow+\infty$.
If M of the variables take the value 1 , and the other $N-M$ the value 0 , we have

$$
P(\underbrace{1, \ldots, 1}_{M \text { times }}, \underbrace{0, \ldots, 0}_{N-M \text { times }})=A_{0} \frac{M}{N}+A_{1}\left(\frac{M}{N}\right)^{2}+\cdots+A_{k-1}\left(\frac{M}{N}\right)^{k}
$$

and so, if we set

$$
f(x)=A_{0} x+A_{1} x^{2}+\cdots+A_{k-1} x^{k}
$$

we want $0 \leqslant f(x) \leqslant 1$ if $0 \leqslant x \leqslant 1$, and A_{0} maximal.
But $A_{0}=f^{\prime}(0)$, and the solution of this problem is given by the Chebyshev polynomial T_{k} (see Rivlin [4]).

So we take $f(x)=\left((-1)^{k-1} T_{k}(2 x-1)+1\right) / 2$, and since $-1 \leqslant T_{k} \leqslant 1$, we have $0 \leqslant f \leqslant 1$ on $[0,1]$. Also, $f(0)=0$, and $f^{\prime}(0)=T_{k}^{\prime}(-1)=k^{2}$ (see Rivlin [4, p. 105]).

Finally, we set

$$
Q\left(x_{1}, \ldots, x_{2 N}\right)=P\left(x_{1}, \ldots, x_{N}\right)-P\left(x_{N+1}, \ldots, x_{2 N}\right)
$$

and we obtain the announced estimate.
We observe that the coefficients A_{0}, \ldots, A_{k-1} can be explicitly computed from the coefficients of the Chebyshev polynomial. In fact, P can be written as

$$
P\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{x_{i}^{k+1}}{m_{1}} f\left(m_{1} / x_{i}\right) .
$$

The quantity $\{P\}_{0,1}$ is of course much easier to compute than any of the existing norms; however, it is not a norm: $\left\{x^{2} y-x y^{2}\right\}_{0,1}=0$.

Acknowledgments

Numerical computations (with 64 variables) related to Propositions 2 and 3 were performed by Jean-Louis Frot on the Connection Machine CM2, at the E.T.C.A., Arcueil. They use the hypercube representation of a many-variable polynomial, obtained in [2], and were quite essential to the understanding of the behavior of these polynomials.

We are also indebted to Bruce Reznick for showing Ref. [3].

References

1. R. Aron, B. Beauzamy, and P. Enflo, Polynomials in many variables: Real vs complex norms, J. Approx. Theory 74 (2) (1993), 181-198.
2. B. Beauzamy, J.-L. Frot, and C. Millour, Massively parallel computations on manyvariable polynomials: When seconds count. To appear in the Special Volume "Maths and Computer Science," Annals of Maths and IA, M. Nivat and S. Grigorieff, editors, 1994.
3. M. D. Chol, T. Y. Lam, and B. ReZnick, Even symmetric sextics, Math. Z. 195 (1987), 559-580.
4. T. J. Rivlin, "The Chebyshev Polynomials," Wiley-Interscience, New York, 1974.

[^0]: * Supported by the C.N.R.S. and the N.S.F., by contract E.T.C.A./C.R.E.A. 20367/91, and by research contract EERP-FR 22, Digital Eq. Corp.

