On the Leading Coefficients of Real Many-Variable Polynomials

BERNARD BEAUZAMY*

Institut de Calcul Mathématique, 37 rue Tournefort, 75005 Paris, France

Communicated by T. J. Rivlin

Received February 20, 1992; accepted in revised form March 23, 1993

For a homogeneous polynomial P in N variables, $x_1, ..., x_N$, of degree k, the leading terms are those which contain only one variable, raised to the power k. If $0 \le P \le 1$ when all variables satisfy $0 \le x_j \le 1$, how large can the leading coefficients be? Estimates were given by R. Aron, B. Beauzamy, and P. Enflo (J. Approx. Theory 74 (2) (1993), 181–198); we improve these estimates in general and solve the problem completely for k = 2 and 3. Symbolic computation (MAPLE on a Digital DecStation 5000) was heavily used at two levels: first in order to get a preliminary intuition on the concepts discussed here, and second, as symbolic manipulation on polynomials, in most proofs. Numerical analysis was made on a Connection Machine CM2, using the hypercube representation obtained by B. Beauzamy, J.-L. Frot, and C. Millour (Massively parallel computations on manyvariable polynomials: When seconds count, preprint). © 1994 Academic Press, Inc.

Let

$$P(x_1, ..., x_N) = \sum_{|\alpha| = k} a_{\alpha} x_1^{\alpha_1} \cdots x_N^{\alpha_N},$$
(1)

with $\alpha = (\alpha_1, ..., \alpha_N)$, $|\alpha| = \alpha_1 + \cdots + \alpha_N$, be a homogeneous polynomial of degree k in N variables $x_1, ..., x_N$.

As already done by Aron, Beauzamy, and Enflo in [1], among all coefficients a_{α} , we distinguish the *leading* ones, denoted by a_l (l = 1, ..., N): a_l is the coefficient of the sole variable x_l , raised to the power k. So the *leading* terms are those which contain just one variable, raised to the power k (this terminology is of course inspired by the one-variable situation). All other terms contain at least two variables, and the polynomial can be written

$$P(x_1, ..., x_N) = \sum_{l=1}^{N} a_l x_l^k + \sum_{|\beta| = k} a_{\beta} x_1^{\beta_1} \cdots x_N^{\beta_N}, \qquad (2)$$

where in the last term all β 's have at least two non-zero components.

* Supported by the C.N.R.S. and the N.S.F., by contract E.T.C.A./C.R.E.A. 20367/91, and by research contract EERP-FR 22, Digital Eq. Corp.

The question raised in [1] is: If we know $\sum_{l=1}^{N} |a_l|$, can we find a lower bound for $\max_{0 \le x_l \le 1} |P(x_1, ..., x_N)|$?

The reason for this question, explained in [1], is that such a result allows us to decrease the number of terms in the polynomial we need to consider: in order to find a lower bound for $\max_{0 \le x_j \le 1} |P(x_1, ..., x_N)|$ (a quantity which depends on all terms in P), we need only to consider the a_i 's, which represent only N terms.

In [1] it was shown that

$$\sum_{1}^{N} |a_{l}| \leq C_{k} \max_{0 \leq x_{j} \leq 1} |P(x_{1}, ..., x_{N})|$$
(3)

with $C_k \leq 4k^2$, and that the best C_k must satisfy $C_k \geq k$.

We will obtain estimates for C_k from below by an iterative procedure (at each step, replacing the variable by a previously obtained polynomial), and this iterative procedure will require $0 \le P \le 1$ when all variables satisfy $0 \le x_i \le 1$ (and not just $|P| \le 1$). For this technical reason, we investigate

$$B_{k} = \sup \left\{ \sum_{i=1}^{N} |a_{i}|; P \text{ as in (1), } 0 \leq P \leq 1 \text{ if } 0 \leq x_{j} \leq 1, \\ j = 1, ..., N; N = 1, 2, ... \right\}$$
(4)

and we want to find a lower bound for B_k . We write $|P|_{\text{lead}}$ instead of $\sum_{l=1}^{N} |a_l|$.

Our main result is:

THEOREM 1. For $k \ge 2$, the following estimates hold: $B_2 \ge 4$, $B_3 \ge 9$, and for $k \ge 3$,

$$B_{\mu} \geqslant k^{\log 6/\log 3}.$$

Each of these estimates requires the production of a corresponding polynomial. The techniques are different in each case.

PROPOSITION 2. The polynomial in N variables, homogeneous of degree 2,

$$P(x_1, ..., x_N) = A\left(\frac{x_1^2 + \cdots + x_N^2}{N} - \frac{2}{N(N-1)} \sum_{i < j} x_i x_j\right),$$

with A = 4(N-1)/N if N is even, A = 4N/(N+1) if N is odd, satisfies $0 \le P \le 1$ if all x_j 's satisfy $0 \le x_j \le 1$.

Proof of Proposition 2. Let's first show that $P \ge 0$, that is,

$$\frac{2}{N(N-1)} \sum_{i < j} x_i x_j \leq \frac{1}{N} (x_1^2 + \dots + x_N^2)$$

or

$$\frac{1}{N(N-1)} \left(\sum_{i \neq j} x_i x_j + \sum_i x_i^2 \right) \leq \left(\frac{1}{N} + \frac{1}{N(N-1)} \right) \sum_i x_i^2,$$

which is equivalent to

$$\frac{1}{N}\left(\sum_{i} x_{i}\right)^{2} \leq \sum_{i} x_{i}^{2},$$

a consequence of Hölder's inequality.

Let's now show that $P \le 1$. Since P is a convex function of each x_j , it's enough to show it when $x_j = 0$ or 1.

Let's assume that K of the x_i 's are 1, and N - K are 0.

The condition $P \leq 1$ reads

$$A\left(\frac{K}{N}-\frac{2}{N(N-1)}\,\frac{K(K-1)}{2}\right)\leqslant 1,$$

or

$$A \frac{K(N-K)}{N(N-1)} \leq 1.$$

The maximum of K(N-K)/N(N-1) is reached for $K \sim N/2$. More precisely, if N is even, N = 2M, it is obtained for K = M, and gives N/4(N-1), and if N = 2M + 1, it is obtained for K = M, and gives (N+1)/4N. The values of A follow.

This gives the required estimate for B_2 in Theorem 1. We observe that the maximum is not obtained for a fixed number of variables, but letting $N \rightarrow +\infty$.

We now turn to the case of degree 3:

PROPOSITION 3. The polynomial

$$P(x_1, ..., x_N) = A \sum_{1}^{N} x_i^3 - B \sum_{i \neq j} x_i^2 x_j + C \sum_{i < j < k} x_i x_j x_k,$$
(5)

66

with

$$A = \frac{1}{N^3} (3N - 4)^2,$$
$$B = \frac{8}{N^3} (3N - 6),$$
$$C = \frac{96}{N^3},$$

satisfies $0 \le P \le 1$ when all the x_i 's satisfy $0 \le x_i \le 1$.

Assuming this result, we see that the estimate for B_3 follows: indeed, when $N \to +\infty$, $|P|_{\text{lead}} \to 9$. But here again, the maximum is not reached for any prescribed number of variables.

Proof of Proposition 3. We take P under the form (5) and compute the values of A, B, C, so it has the required properties. First, we study the case where K of the variables x_j take the value 1, and N-K take the value 0 $(0 \le K \le N)$. We set

$$\varphi(K) = P(\underbrace{1, ..., 1}_{K \text{ times}}, 0, ..., 0)$$

and so

$$\varphi(K) = AK - BK(K-1) + \frac{C}{6}K(K-1)(K-2).$$
(6)

We will choose A, B, C, such that $0 \le \varphi(K) \le 1$ for K = 0, ..., N, and with A as large as possible since $|P|_{\text{lead}} = AN$.

The polynomial $\varphi(x)$ must vanish at 0, must satisfy $0 \le \varphi(x) \le 1$ if $x \in [0, N]$, and we want $\varphi(1)$ to be as large as possible. Therefore, we will require φ to have a double zero α , $0 \le \alpha \le N$ (which ensures $\varphi(x) \ge 0$, $0 \le x \le N$), and we prescribe $\varphi(x)$ to be of the form

$$\varphi(x) = \gamma x (x - \alpha)^2, \tag{7}$$

where $0 \le \alpha \le N$, and $\gamma > 0$ have to be chosen. Then clearly $\varphi(K) \ge 0$ for all $K \ge 0$, and by a result of Choi, Lam, and Reznick [3, Theorem 3.7], since deg $P \le 3$, this implies that $P \ge 0$ when $x_i \ge 0$.

We have

$$\varphi'(x) = \gamma(x-\alpha)(3x-\alpha),$$

and so, in order to impose $\varphi(x) \leq 1$, $0 \leq x \leq N$, all we have to require is $\varphi(\alpha/3) \leq 1$, $\varphi(N) \leq 1$, that is,

$$2\gamma \alpha^3/27 \le 1$$

 $\gamma N(N-\alpha)^2 \le 1.$

We put $\alpha = \lambda N$ (0 < λ < 1), and we obtain

$$4\gamma\lambda^3 N^3/27 \le 1$$

$$\gamma N^3 (1-\lambda)^2 \le 1.$$
 (8)

But $\varphi(1) = \gamma(1-\alpha)^2 = \gamma(1-\lambda N)^2$ is an increasing function of γ . So $\varphi(1)$ will be maximal if both inequalities in (8) are equalities. Solving in λ , MAPLE gets

$$\left(\frac{\lambda}{3}\right)^3 = \left(\frac{1-\lambda}{2}\right)^2$$

and finds the solutions $\lambda = 3/4$, 3, 3.

This gives $\alpha = 3N/4$, $\gamma = 16/N^3$, and

$$\varphi(x) = \frac{16}{N^3} x \left(x - \frac{3}{4} N \right)^2.$$

The values of A, B, C, are now deduced from the system

 $\varphi(1) = A, \qquad \varphi(2) = 2A - 2B, \qquad C = 6\gamma,$

easily solved by MAPLE.

We now show that $P \leq 1$ when all the x_i are ≤ 1 .

For this, we first observe that P can be written as

$$P(x_1, ..., x_N) = \frac{9}{N} \sum_{i=1}^{N} x_i^3 - \frac{24}{N^2} \left(\sum_{i=1}^{N} x_i^2 \right) \left(\sum_{i=1}^{N} x_i \right) + \frac{16}{N^3} \left(\sum_{i=1}^{N} x_i \right)^3.$$
(9)

To simplify our notation, we put

$$m_1 = \frac{1}{N} \sum_{i=1}^{N} x_i, \qquad m_2 = \frac{1}{N} \sum_{i=1}^{N} x_i^2, \qquad m_3 = \frac{1}{N} \sum_{i=1}^{N} x_i^3,$$

and P becomes

$$P = 9m_1 - 24m_1m_2 + 16m_3.$$

We have:

LEMMA 4. Let P be a symmetric polynomial of degree 3, written as

$$P = am_3 + bm_1m_2 + cm_1^3,$$

where $a + b + c \le 1$, $3a + b \ge 0$, $2b + 3c \ge 0$. Then, if $P \ge 0$ when all $x_i \ge 0$, P automatically satisfies $P \le 1$ when $0 \le x_i \le 1$.

Proof of Lemma 4. We set $x_i = 1 - t_i$. If $x_i \le 1$, $t_i \ge 0$, and with the notation

$$\mu_1 = \frac{1}{N} \sum_{i=1}^{N} t_i, \qquad \mu_2 = \frac{1}{N} \sum_{i=1}^{N} t_i^2, \qquad \mu_3 = \frac{1}{N} \sum_{i=1}^{N} t_i^3,$$

P becomes

$$P = -(a\mu_3 + b\mu_1\mu_2 + c\mu_1^3) + a + b + c$$

- 3\mu_1(a + b + c) + \mu_2(3a + b) + \mu_1^2(2b + 3c).

Since $a\mu_3 + b\mu_1\mu_2 + c\mu_1^3 \ge 0$, the condition $P \le 1$ will be satisfied as soon as

$$a+b+c-3\mu_1(a+b+c)+\mu_2(3a+b)+\mu_1^2(2b+3c) \le 1.$$

But $\mu_2 \leq \mu_1$, $3a + b \geq 0$, so this inequality holds if

$$a+b+c-\mu_1(1-\mu_1)(2b+3c) \le 1$$
,

which is satisfied by assumption. This proves Lemma 4, and finishes the proof of the theorem in the case k = 3.

Remark. If we put

$$Q(x_1, ..., x_{2N}) = P(x_1, ..., x_N) - P(x_{N+1}, ..., x_{2N}),$$

we find that $|Q(x_1, ..., x_{2N})| \le 1$ if $0 \le x_j \le 1$, and $|Q|_{\text{lead}} \to 18$ when $N \to +\infty$.

So the best constant C_3 in the inequality

$$|Q|_{\text{lead}} \leq C_k \sup_{0 \leq x_j \leq 1} |Q(x_1, ..., x_N)|$$

satisfies $C_3 \ge 18$; Theorem 1.2 in [1] shows that $C_k \le 4k^2$.

Can this construction of P, with large leading coefficients, be carried over for k > 3? We don't know. Following the same pattern would require:

— Finding a polynomial $\varphi(x)$ of degree k, in one variable, with $0 \le \varphi(x) \le 1$ if $0 \le x \le N$, and $\varphi(1)$ as large as possible;

--- Identifying the many-variable polynomial $P(x_1, ..., x_N)$, homogeneous of degree k, with first term $A \sum_{i=1}^{N} x_i^k$, such that

$$P(\underbrace{1, ..., 1}_{j \text{ times}}, 0, ..., 0) = \varphi(j),$$

for j = 0, ..., N;

Proving that $0 \le P \le 1$ if all x_i 's satisfy $0 \le x_i \le 1$.

The first two steps are not very hard to perform, but the last one proving that $0 \le P \le 1$ — does not seem within our reach at present. Of course, the result of Choi, Lam, and Reznick we have used is not valid for $k \ge 3$, but this is not the main point: our proof, for k = 3, only uses this result for simplicity (our original proof did not). The main point is that no tool is presently known, ensuring that a many-variable polynomial, of degree k > 3, satisfies $0 \le P \le 1$ when all x_i satisfy $0 \le x_i \le 1$.

Since this problem cannot be solved, we have two possibilities. The first one is to build P, with $0 \le P \le 1$, by some iterative procedure from a known polynomial: this will lead to the estimate for B_k in Theorem 1. These estimates are not in k^2 as we would like, but they are better than anything previously known.

The second one will be to change the norm, and replace

$$\sup_{0 \le x_j \le 1} |P(x_1, ..., x_N)|$$

by the quantity

$$\sup_{x_j=0, 1} |P(x_1, ..., x_N)|,$$

which will be discussed at the end of the paper.

We now turn to the iterative procedure in order to estimate B_k .

PROPOSITION 5. Assume we can find a polynomial P_0 , with N_0 variables, homogeneous of degree k_0 , with the properties:

all leading coefficients are 1,

- if all x_i satisfy $0 \le x_i \le 1$, then $0 \le P_0 \le 1$.

Then $B_k \ge k^{\log N_0/\log k_0}$, for all k of the form $k = k_0^j$, $j \in \mathbb{N}$.

Proof of Proposition 5. By assumption $|P_0|_{\text{lead}} = N$ and $0 \le P_0 \le 1$ if all $x_i \in [0, 1]$. Set $P_1 = P_0$, and

$$P_2 = P_0(P_1(x_1, ..., x_{N_0}), P_1(x_{N_0+1}, ..., x_{2N_0}), ..., P_1(x_{(N_0-1)N_0+1}, ..., x_{N_0^2})).$$

So P_2 has N_0^2 variables, $|P_2|_{\text{lead}} = N^2$, deg $P_2 = k_0^2$, and $0 \le P_2 \le 1$ if $x_i \in [0, 1]$.

Assume P_{j-1} has been defined, with N_0^{j-1} variables, deg $P_{j-1} = k^{j-1}$, and $0 \le P_{j-1} \le 1$ if $x_i \in [0, 1]$. Set

$$P_{j} = P_{0}(P_{j-1}(x_{1}, ..., x_{N_{0}^{j-1}}), ..., P_{j-1}(x_{(N_{0}-1)N_{0}^{j-1}+1}, ..., x_{N_{0}^{j}})).$$

So P_j has N_0^j variables, $|P_j|_{\text{lead}} = N_0^j$, deg $P_j = k_0^j$, and $0 \le P_j \le 1$ if $x_i \in [0, 1]$.

Set $k = \deg P_i$. Then

 $N_0^j \leq B_k$.

But $k = k_0^j$, $j = \log k / \log k_0$, and

$$B_k \ge N_0^{\log k/\log k_0} = k^{\log N_0/\log k_0},$$

as we announced. This proves Proposition 5.

We observe that, in order to be applied, this inductive procedure requires a polynomial with leading coefficients all equal to 1, and this is not the case of the ones we have exhibited so far.

So we will prove:

PROPOSITION 6. The polynomial in 6 variables, with 56 terms,

$$P_0(x_1, ..., x_6) = \sum_{1}^{6} x_i^3 - \frac{1}{2} \sum_{i \neq j} x_i^2 x_j + \frac{1}{2} \sum_{i < j < k} x_i x_j x_k$$
(10)

satisfies $0 \leq P_0 \leq 1$ if $x_i \in [0, 1]$.

This proposition, producing a polynomial of degree 3 with 6 variables, gives the estimate $k^{\log 6/\log 3}$ in Theorem 1. It improves upon the estimate $k^{\log 3/\log 2}$, obtained by A. Tonge from the consideration of the polynomial

$$P_0(x, y, z) = x^2 + y^2 + z^2 - xy - yz - zx,$$

which also satisfies $0 \le P_0 \le 1$ if $x, y, z \in [0, 1]$.

Before proving Proposition 6, we will state:

PROPOSITION 7. The polynomial P_0 defined in (10) is, among all polynomials of degree 3 with leading coefficients 1, with 6 variables, the only one

which may satisfy $0 \le P_0 \le 1$ if all $x_i \in [0, 1]$. There is no such polynomial with 7 variables.

Proof of Proposition 7. We consider any degree 3 polynomial with N variables, of the form

$$P = \sum_{1}^{N} x_i^3 - C_1 \sum_{i < j} x_i^2 x_j + C_2 \sum_{i < j < k} x_i x_j x_k.$$

Taking K of the variables x_i to be 1, N-K to be 0, we obtain the set of conditions

$$0 \leq K - K(K-1) C_1 + \frac{K(K-1)(K-2)}{6} C_2 \leq 1,$$

which can be written, for $K \ge 2$,

$$\frac{1}{K} \leqslant C_1 - \frac{K-2}{6} C_2 \leqslant \frac{1}{K-1}.$$
(11)

Taking successively K = 2, 3, 4, we get

$$\frac{1}{2} \leq C_1 \leq 1,$$

$$C_2 \geq 6(C_1 - \frac{1}{2}) \geq 0,$$

$$C_2 \geq 1/2.$$

The left-hand side conditions in (11) can be written

$$C_1 \ge \frac{K-2}{6} C_2 + \frac{1}{K},\tag{12}$$

and since $C_2 \ge 1/2$, the strongest one will be the one with the highest K.

The right-hand side gives

$$C_1 \leqslant \frac{K-2}{6} C_2 + \frac{1}{K-1},\tag{13}$$

and the conditions for $K \ge 4$ are weaker than those for K = 4, and so we keep these for K = 3, 4, that is,

$$C_1 \leqslant \frac{1}{6}C_2 + \frac{1}{2} \tag{14}$$

$$C_1 \leqslant \frac{1}{3}C_2 + \frac{1}{3}.$$
 (15)

This implies that no 7-variable polynomial may exist. Indeed, we would have by (12)

$$C_1 \ge \frac{5}{6}C_2 + \frac{1}{7},$$

and by (15)

$$\frac{5}{6}C_2 + \frac{1}{7} \leq \frac{1}{3}C_2 + \frac{1}{3},$$

which gives $C_2 \leq 8/21$, contradicting $C_2 \geq 1/2$.

This also implies the uniqueness for K = 6. Indeed, (12) gives

$$C_1 \ge \frac{2}{3}C_2 + \frac{1}{6},$$

and compatibility with (14), (15) implies $C_2 = 1/2$.

Coming back to (11), we find

$$\frac{1}{K} \leqslant C_1 - \frac{K-2}{12} \leqslant \frac{1}{K-1},$$

and for K=4, this gives $C_1 \le 1/2$, and finally $C_1 = 1/2$, which proves Proposition 7.

We now prove Proposition 6.

(1) To show that $P_0 \ge 0$ if $x_j \ge 0$, by the theorem of Choi, Lam, and Reznick [3] already cited, it is enough to do it when K of the variables are equal to 1, 6 - K equal to 0 (K = 0, ..., 6). Set

$$\varphi(K) = P(\underbrace{1, ..., 1}_{K \text{ times}}, \underbrace{0, ..., 0}_{6-K \text{ times}}).$$

Then

$$\varphi(K) = K - \frac{K(K-1)}{2} + \frac{K(K-1)(K-2)}{12}$$
$$= \frac{1}{12} K(K-4)(K-5),$$

and $\varphi(K) \ge 0$ for K = 0, ..., 6.

(2) To show that $P_0 \le 1$ if $x_j \in [0, 1]$, we write P_0 under symmetric form

$$P_0 = 10 \left(\frac{1}{6} \sum_{i=1}^{6} x_i^3\right) - 27 \left(\frac{1}{6} \sum_{i=1}^{6} x_i^2\right) \left(\frac{1}{6} \sum_{i=1}^{6} x_i\right) + 18 \left(\frac{1}{6} \sum_{i=1}^{6} x_i\right)^3$$

= 10m₃ - 27m₁m₂ + 18m₁³,

and we apply Lemma 4 again.

This concludes the proof of Proposition 7, and that of Theorem 1.

Remark. In a preliminary version of this paper, the proof of Proposition 5 was obtained by symbolic manipulation in the following way. Maple computes the 6 partial derivatives (which have degree 2), and the differences $\partial P/\partial x_i - \partial P/\partial x_j$. The entire system of differences is then solved. Then one studies the boundary cases $x_j = 0$, 1. The proof presented here is of course much simpler, but there is no evidence it exists for degree 5 and above.

We now investigate similar concepts for the quantity

$$\{P\}_{0,1} = \max_{x_j=0,1} |P(x_1, ..., x_N)|$$

and define D_k as the smallest constant such that

$$|P|_{\text{lead}} \leq D_k \max_{x_j=0, 1} |P(x_1, ..., x_N)|$$

holds for all polynomials P, homogeneous of degree k, in many variables $x_1, ..., x_N$.

First, the proof of Theorem 1.2 in [1] shows that

$$D_k \leq 4k^2$$
.

We are going to prove:

PROPOSITION 8. For every $k \ge 1$, $D_k \ge 2k^2$.

Proof of Proposition 8. We consider P under the form

$$P = A_0 \left(\frac{1}{N} \sum_{i=1}^{N} x_i^k\right) + A_1 \left(\frac{1}{N} \sum_{i=1}^{N} x_i^{k-1}\right) \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)$$
$$+ A_2 \left(\frac{1}{N} \sum_{i=1}^{N} x_i^{k-2}\right) \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)^2$$
$$+ \dots + A_j \left(\frac{1}{N} \sum_{i=1}^{N} x_i^{k-j}\right) \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)^j + \dots + A_{k-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)^k$$
$$= A_0 m_k + A_1 m_{k-1} m_1 + \dots + A_j m_{k-j} m_1^j + \dots + A_{k-1} m_1^k,$$

with our previous notation.

The coefficient of x_1^k is

$$\frac{A_0}{N}+\frac{A_1}{N^2}+\cdots+\frac{A_{k-1}}{N^k},$$

and therefore

$$|P|_{\text{lead}} = A_0 + \frac{A_1}{N} + \cdots + \frac{A_{k-1}}{N^{k-1}} \rightarrow A_0,$$

when $N \rightarrow +\infty$.

If M of the variables take the value 1, and the other N - M the value 0, we have

$$P(\underbrace{1, ..., 1}_{M \text{ times}}, \underbrace{0, ..., 0}_{N-M \text{ times}}) = A_0 \frac{M}{N} + A_1 \left(\frac{M}{N}\right)^2 + \cdots + A_{k-1} \left(\frac{M}{N}\right)^k,$$

and so, if we set

$$f(x) = A_0 x + A_1 x^2 + \dots + A_{k-1} x^k,$$

we want $0 \leq f(x) \leq 1$ if $0 \leq x \leq 1$, and A_0 maximal.

But $A_0 = f'(0)$, and the solution of this problem is given by the Chebyshev

polynomial T_k (see Rivlin [4]). So we take $f(x) = ((-1)^{k-1} T_k(2x-1)+1)/2$, and since $-1 \le T_k \le 1$, we have $0 \le f \le 1$ on [0, 1]. Also, f(0) = 0, and $f'(0) = T'_k(-1) = k^2$ (see Rivlin [4, p. 105]).

Finally, we set

$$Q(x_1, ..., x_{2N}) = P(x_1, ..., x_N) - P(x_{N+1}, ..., x_{2N}),$$

and we obtain the announced estimate.

We observe that the coefficients $A_0, ..., A_{k-1}$ can be explicitly computed from the coefficients of the Chebyshev polynomial. In fact, P can be written as

$$P(x_1, ..., x_N) = \frac{1}{N} \sum_{i=1}^{N} \frac{x_i^{k+1}}{m_1} f(m_1/x_i).$$

The quantity $\{P\}_{0,1}$ is of course much easier to compute than any of the existing norms; however, it is not a norm: $\{x^2y - xy^2\}_{0,1} = 0$.

ACKNOWLEDGMENTS

Numerical computations (with 64 variables) related to Propositions 2 and 3 were performed by Jean-Louis Frot on the Connection Machine CM2, at the E.T.C.A., Arcueil. They use the hypercube representation of a many-variable polynomial, obtained in [2], and were quite essential to the understanding of the behavior of these polynomials.

We are also indebted to Bruce Reznick for showing Ref. [3].

BERNARD BEAUZAMY

References

- 1. R. ARON, B. BEAUZAMY, AND P. ENFLO, Polynomials in many variables: Real vs complex norms, J. Approx. Theory 74 (2) (1993), 181–198.
- 2. B. BEAUZAMY, J.-L. FROT, AND C. MILLOUR, Massively parallel computations on manyvariable polynomials: When seconds count. To appear in the Special Volume "Maths and Computer Science," Annals of Maths and IA, M. Nivat and S. Grigorieff, editors, 1994.
- 3. M. D. CHOI, T. Y. LAM, AND B. REZNICK, Even symmetric sextics, Math. Z. 195 (1987), 559-580.
- 4. T. J. RIVLIN, "The Chebyshev Polynomials," Wiley-Interscience, New York, 1974.