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For a homogeneous polynomial P in N variables, Xl' ... , X N , of degree k, the
leading terms are those which contain only one variable, raised to the power k. If
0:;;;; P:;;;; I when all variables satisfy 0:;;;; xj :;;;; I, how large can the leading coefficients
be? Estimates were given by R. Aron, B. Beauzamy, and P. Enl10 (J. Approx.
Theory 74 (2) (1993), 181~198); we improve these estimates in general and solve
the problem completely for k = 2 and 3. Symbolic computation (MAPLE on a
Digital DecStation 5(00) was heavily used at two levels: first in order to get a
preliminary intuition on the concepts discussed here, and second, as symbolic
manipulation on polynomials, in most proofs. Numerical analysis was made on a
Connection Machine CM2, using the hypercube representation obtained by
B. Beauzamy, J.-L. Frot, and C. Millour (Massively parallel computations on many­
variable polynomials: When seconds count, preprint). i1) 1994 Academic Press, Inc.

Let

P(X I , ••• , XN ) = L a~x~'" 'X~,
I~I ,= k

(1)

with IX = (IX I' ... , IXN), IIX I = IX 1 + ... + IXN' be a homogeneous polynomial of
degree k in N variables x I' ... , X N'

As already done by Aron, Beauzamy, and EntIo in [1 J, among all coef­
ficients a"" we distinguish the leading ones, denoted by a, (l = 1, ... , N): at is
the coefficient of the sole variable XI> raised to the power k. So the leading
terms are those which contain just one variable, raised to the power k (this
terminology is of course inspired by the one-variable situation). All other
terms contain at least two variables, and the polynomial can be written

a Xiii ... x liN
(J I N'

N

P(xj, .."x N )= L a,x7+ L
'~l llil ~k

where in the last term all {3's have at least two non-zero components.

(2)
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The question raised in [1] is: If we know L:~= j la,l, can we find a lower
bound for maxo,,;x;,,; I IP(x l , •••, xN)I?

The reason for this question, explained in [1], is that such a result
allows us to decrease the number of terms in the polynomial we need to
consider: in order to find a lower bound for maxo,,;x;,,;1 IP(x j , ••• , xN)1 (a
quantity which depends on all terms in P), we need only to consider the
a/s, which represent only N terms.

In [1] it was shown that

N

L lall ~ Ck max IP(x l , 00" xN)1
I O~Xj~ 1

(3)

with Ck ~ 4k 2
, and that the best Ck must satisfy Ck ~ k.

We will obtain estimates for Ck from below by an iterative procedure (at
each step, replacing the variable by a previously obtained polynomial), and
this iterative procedure will require 0 ~ P ~ 1 when all variables satisfy
o~ x j :::; 1 (and not just IPI :::; 1). For this technical reason, we investigate

Bk=Supt~1 lall;Pasin (l),O~P~l if O~xj~l,

J=I"oO,N;N=1,2,oO'} (4)

and we want to find a lower bound for Bk • We write \Pl 1ead instead of
L~~j lall·

Our main result is:

THEOREM 1. For k ~ 2, the following estimates hold: B 2 ~ 4, B 3 ~ 9, and
for k~ 3,

Each of these estimates requires the production of a corresponding poly­
nomial. The techniques are different in each case.

PROPOSITION 2. The polynomial in N variables, homogeneous of degree 2,

(
Xi+ ... +x~

P(x1'oO.,xN)=A N

with A = 4(N - 1)/N if N is even, A = 4N/(N + 1) if N is odd, satisfies
o~ P ~ 1 if all xj's satisfy 0 ~ X j ~ 1.
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Proof of Proposition 2. Let's first show that P ~ 0, that is,

2" 1 2 2L. XiXj~- (Xl + ... +X N )
N(N -1) i<j N

or

which is equivalent to

~ (I Xi )2~I x;,
N; i

a consequence of Holder's inequality.
Let's now show that P ~ 1. Since P is a convex function of each Xj' it's

enough to show it when xj = °or 1.
Let's assume that K of the xis are 1, and N - K are 0.
The condition P ~ 1 reads

(
K 2 K(K-1))

A N-N(N-1) 2 ~1,

or

A K(N -K) ~ 1.
N(N - 1) '"

The maximum of K(N - K)/N(N - 1) is reached for K - N/2. More
precisely, if N is even, N = 2M, it is obtained for K = M, and gives N/4(N - 1),
and if N = 2M + 1, it is obtained for K = M, and gives (N + 1)/4N. The
values of A follow.

This gives the required estimate for B2 in Theorem 1. We observe that
the maximum is not obtained for a fixed number of variables, but letting
N ~ +00.

We now turn to the case of degree 3:

PROPOSITION 3. The polynomial

N

P(Xl' ... , xN)=A L xi-B I x;xj+C L: x;xjxk , (5)
1 i""j i<j<k



with
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1 2
A =- (3N-4)

N 3 '

8
B=- (3N-6)

N 3
'
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satisfies 0 ~ P ~ 1 l1'hen all the xi's satisfy 0 ~ Xi ~ I.

Assuming this result, we see that the estimate for B 3 follows: indeed,
when N-> +W, IPl lead ->9, But here again, the maximum is not reached
for any prescribed number of variables.

Proof of Proposition 3. We take P under the form (5) and compute the
values of A, B, C, so it has the required properties. First, we study the case
where K of the variables xi take the value I, and N - K take the value 0
(O~K~N). We set

q>(K)=P(I, ...,I,O, ...,O)

Ktimes

and so

C
q>(K)=AK-BK(K-I)+6 K(K-I)(K-2). (6)

We will choose A, B, C, such that 0 ~ q>(K) ~ 1 for K = 0, ..., N, and with
A as large as possible since IPl 1ead = AN.

The polynomial q>(x) must vanish at 0, must satisfy 0 ~ q>(x) ~ 1 if
x E [0, NJ, and we want q>( I) to be as large as possible. Therefore, we will
require q> to have a double zero ee, 0 ~ ee ~ N (which ensures q>(x) ~ 0,
o~ x < N), and we prescribe q>(x) to be of the form

(7)

where 0 ~ ee ~ N, and }' > 0 have to be chosen. Then clearly q>(K) ~ 0 for all
K~O, and by a result of Choi, Lam, and Reznick [3, Theorem 3.7], since
deg P ~ 3, this implies that P ~ 0 when xi ~ O.

We have

cp'(x) = y(x - ee)(3x - ee),



68 BERNARD BEAUZAMY

(8)

and so, in order to impose q>(x)« 1, O«x«N, all we have to require is
q>(a/3)« 1, q>(N)« 1, that is,

2ya3/27 « 1

yN(N-af« 1.

We put (X = AN (0 < A< 1), and we obtain

4y}.3 N 3/27 «1

yN 3 (1 - }.)2 « 1.

But q>( 1) = y( t - a)2 = y( t - ANf is an increasing function of y. So cp( 1)
will be maximal if both inequalities in (8) are equalities. Solving in }.,
MAPLE gets

and finds the solutions }. = 3/4, 3, 3.
This gives a = 3N/4, y = 16/N 3

, and

The values of A, B, C, are now deduced from the system

cp(l)=A, cp(2) = 2A - 2B, C=6y,

easily solved by MAPLE.
We now show that P ~ 1 when all the x j are ~ 1.
For this, we first observe that P can be written as

9 N 24 (N )( N ) 16 (N )3P(x 1"",x N )=-Lx;--2 LX; LXi +-3 LX; .
N I NIl N 1

To simplify our notation, we put

(9)

and P becomes
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We have:

LEMMA 4. Let P be a symmetric polynomial of degree 3, written as

69

where a+b+c~ 1, 3a+b;30, 2b+3c;30. Then, if P;30 »'hen all x j ;30,

P automatically satisfies P ~ 1 when °~ x j ~ 1.

Proof of Lemma 4. We set Xi = 1 - t i • If Xi ~ 1, t i ;3 0, and with the
notation

P becomes

P= -(aI-l3+bI-lI1-l2+Cl-li)+a+b+c

- 31-11 (a + b + c) + 1-12(3a + b) + fli(2b + 3c).

Since aJ.1.3 + bfll J.1.2 + Cfl~ ;3 0, the condition P ~ 1 will be satisfied as soon as

But 1-12 ~ 111' 3a +b ~ 0, so this inequality holds if

which is satisfied by assumption. This proves Lemma 4, and finishes the
proof of the theorem in the case k = 3.

Remark. If we put

we find that IQ(x l , ... , x2N)1 ~ 1 if 0 ~ xj ~ 1, and IQllead -+ 18 when
N -+ +00.

So the best constant C3 in the inequality

IQllead ~ Ck sup \Q(x l , •.• , xN)1
O~Xj~ 1

satisfies C3;3 18; Theorem 1.2 in [1] shows that C k ~4e
Can this construction of P, with large leading coefficients, be carried

over for k> 3? We don't know. Following the same pattern would require:
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- Finding a polynomial q>(x) of degree k, in one variable, with
0,;::;; qJ(x) ,;::;; 1 if 0,;::;; x,;::;; N, and qJ( 1) as large as possible;

~- Identifying the many-variable polynomial P(x 1, •.. , XN), homogeneous
of degree k, with first term A L:~ x;, such that

P(l, ... , 1, 0, ..., 0) = qJ(j),

j times

for j=O, ..., N;

Proving that 0';::;; P ,;::;; 1 if all x/s satisfy 0,;::;; x j ';::;; 1.

The first two steps are not very hard to perform, but the last one­
proving that 0,;::;; P';::;; 1-- does not seem within our reach at present. Of
course, the result of Choi, Lam, and Reznick we have used is not valid for
k ~ 3, but this is not the main point: our proof, for k = 3, only uses this
result for simplicity (our original proof did not). The main point is that no
tool is presently known, ensuring that a many-variable polynomial, of
degree k > 3, satisfies 0,;::;; P';::;; 1 when all Xi satisfy 0,;::;; Xi';::;; 1.

Since this problem cannot be solved, we have two possibilities. The first
one is to build P, with 0';::;; P';::;; 1, by some iterative procedure from a
known polynomial: this will lead to the estimate for Bk in Theorem 1.
These estimates are not in e as we would like, but they are better than
anything previously known.

The second one will be to change the norm, and replace

sup IP(x 1 , ... , xN)1
O~XJ~ I

by the quantity

sup IP(x 1 , ... , x N )!,
.')= o. 1

which will be discussed at the end of the paper.
We now turn to the iterative procedure in order to estimate Bk •

PROPOSITION 5. Assume we can find a polynomial Po, with No variables,
homogeneous of degree ko, with the properties:

all leading coefficients are 1,

if all x j satisfy 0,;::;; x j ';::;; 1, then 0,;::;; Po';::;; 1.

Then Bk ~ k 10g No/log ko, for all k of the form k = k~, j EN.
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Proof of Proposition 5. By assumption IPO/lead = Nand 0 ~ Po ~ 1 if all
XjE [0,1]. Set PI = Po, and

P 2 = PO(PI(X 1 , ... , x No )' PI (x No + I' ..., X 2No )' ... , P1(X(No-I)No+ I' ... , XN~))'

So P2 has N~ variables, IP2 11ead = N 2
, deg P 2 = k~, and 0 ~ P2 ~ 1 if

XiE [0,1].
Assume ~_ I has been defined, with N~- I variables, deg Pj _ I = k j

- I, and
O~Pj_1 ~ 1 if XjE [0,1]. Set

~ = Po(~ - I (x], ..., X N6- 1), ... , Pi - I (x (No - I) N6- ' + I' ... , x N6))'

SO Pj has N~ variables, IPjllead = N~, deg Pj = k~, and 0 ~ Pj ~ 1 if
x j E[O,I].

Set k = deg Pj' Then

But k = k~, j = log kjlog ko, and

as we announced. This proves Proposition 5.

We observe that, in order to be applied, this inductive procedure
requires a polynomial with leading coefficients all equal to 1, and this is not
the case of the ones we have exhibited so far.

So we will prove:

PROPOSITION 6. The polynomial in 6 variables, with 56 terms,

satisfies 0 ~ Po ~ 1 if Xi E [0, 1].

This proposition, producing a polynomial of degree 3 with 6 variables,
gives the estimate k 'og 6(log 3 in Theorem 1. It improves upon the estimate
k 10g

3/log 2, obtained by A. Tonge from the consideration of the polynomial

which also satisfies 0 ~ Po ~ 1 if x, y, Z E [0, 1].
Before proving Proposition 6, we will state:

PROPOSITION 7. The polynomial Po defined in (10) is, among all polyno­
mials of degree 3 with leading coefficients 1, with 6 variables, the only one
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which may satisfy °~ Po ~ 1 if all Xi E [0, 1]. There is no such polynomial
with 7 variables.

Proof of Proposition 7. We consider any degree 3 polynomial with N
variables, of the form

N

P=Lx;-C 1 L x;xj +C2 L XiXjXk'

1 i<j i<j<k

Taking K of the variables Xi to be 1, N - K to be 0, we obtain the set of
conditions

K(K-I)(K-2)
O~K-K(K-I)Cl+ 6 C2~I,

which can be written, for K ~ 2,

(11)

Taking successively K = 2, 3, 4, we get

C2 ~ 6(C[ - !)~O,

C2 ~ 1/2.

The left-hand side conditions in (11) can be written

(12)

and since C 2 ~ 1/2, the strongest one will be the one with the highest K.
The right-hand side gives

(13 )

and the conditions for K ~ 4 are weaker than those for K = 4, and so we
keep these for K = 3, 4, that is,

cl~ic2+!

CI~~C2+~'

(14)

(15 )
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This implies that no 7-variable polynomial may exist. Indeed, we would
have by (12)

and by (15)

which gives C 2 ~ 8/21, contradicting C2 ~ 1/2.
This also implies the uniqueness for K = 6. Indeed, (12) gives

and compatibility with (14), (15) implies C2 = 1/2.
Coming back to (11), we find

and for K = 4, this gives C 1~ 1/2, and finally C 1 = 1/2, which proves
Proposition 7.

We now prove Proposition 6.

(1) To show that Po ~°if x j ~ 0, by the theorem of Choi, Lam, and
Reznick [3] already cited, it is enough to do it when K of the variables are
equal to 1, 6 - K equal to °(K = 0, , 6). Set

q>(K) = P(1, , 1, 0, ..., °).
~ -------­

K times 6 K times

Then

K(K-l) K(K-l)(K-2)
q>(K)=K- 2 + 12

1=12 K(K -4)(K - 5),

and q>(K) ~°for K = 0, ..., 6.

(2) To show that Po~ 1 if XjE [0,1], we write Po under symmetric
form

Po=IOG ~X;)-27G ~X;)(~ ~Xi)+18G ~Xir
= lOm3-27mlm2+ 18m~,

and we apply Lemma 4 again.
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This concludes the proof of Proposition 7, and that of Theorem 1.

Remark. In a preliminary version of this paper, the proof of Proposi­
tion 5 was obtained by symbolic manipulation in the following way. Maple
computes the 6 partial derivatives (which have degree 2), and the differences
oP/ox i - oP/oxj . The entire system of differences is then solved. Then one
studies the boundary cases x j = 0, 1. The proof presented here is of course
much simpler, but there is no evidence it exists for degree 5 and above.

We now investigate similar concepts for the quantity

and define D k as the smallest constant such that

holds for all polynomials P, homogeneous of degree k, in many variables
Xl' ...,xN ·

First, the proof of Theorem 1.2 in [1] shows that

We are going to prove:

PROPOSITION 8. For every k ~ 1, D k ~ 2k2
•

Proof of Proposition 8. We consider P under the form

P= A o (~ ~ X;) + A 1(~ ~ X;'l)(~ ~ Xi)

+ A 2 (~ ~ X; -2)(~ ~ X) 2

(1N k ,)( 1N )j (1 N )k+ .. , + Aj N ~ Xi -J N ~ Xi + ... + A k- l N ~ Xi

=AOmk+Almk_lmt + ... +Ajmk __jm~ + .. , +Ak-1m7,

with our previous notation.
The coefficient of x7 is
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when N -> +w.
If M of the variables take the value 1, and the other N - M the value 0,

we have

and so, if we set

we w'ant 0:(, f(x) :(, 1 if °:(, x:(, 1, and Ao maximal.
But A o = /,(0), and the solution of this problem is given by the Chebyshev

polynomial Tk (see Rivlin [4]).
So we take f( x) = ((- 1)k - 1 Tk (2x - 1) + 1)/2, and since - 1 :(, Tk :(, 1,

we have 0:(, f:(, 1 on [0, 1]. Also, f(O) = 0, and /,(0) = T~( -1) = k 2 (see
Rivlin [4, p. 105]).

Finally, we set

and we obtain the announced estimate.

We observe that the coefficients A o, ..., A k _ 1 can be explicitly computed
from the coefficients of the Chebyshev polynomial. In fact, P can be written
as

1 N x k + t

P(xt, ... ,xN)=N L -'-f(mt/xJ
;=1 m l

The quantity {P}o. 1 is of course much easier to compute than any of the
existing norms; however, it is not a norm: {x 2y - xy2} O. J = O.
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